Here we take Zach Mueller's CAMVID Segmentation Tutorial and try to segment our real data as object vs background ("all one" class rather than multiple classes)

 
import torch, re 
tv, cv = torch.__version__, torch.version.cuda
tv = re.sub('\+cu.*','',tv)
TORCH_VERSION = 'torch'+tv[0:-1]+'0'
CUDA_VERSION = 'cu'+cv.replace('.','')

print(f"TORCH_VERSION={TORCH_VERSION}; CUDA_VERSION={CUDA_VERSION}")
print(f"CUDA available = {torch.cuda.is_available()}, Device count = {torch.cuda.device_count()}, Current device = {torch.cuda.current_device()}")
print(f"Device name = {torch.cuda.get_device_name()}")
print("hostname:")
!hostname
TORCH_VERSION=torch1.9.0; CUDA_VERSION=cu111
CUDA available = True, Device count = 1, Current device = 0
Device name = GeForce RTX 3080
hostname:
bengio

This article is also a Jupyter Notebook available to be run from the top down. There will be code snippets that you can then run in any environment.

Below are the versions of fastai, fastcore, wwf, and espiownage currently running at the time of writing this:

  • fastai : 2.5.2
  • fastcore : 1.3.26
  • wwf : 0.0.16
  • espiownage : 0.0.47

Libraries

from fastai.vision.all import *
from espiownage.core import *

Below you will find the exact imports for everything we use today

from fastcore.xtras import Path

from fastai.callback.hook import summary
from fastai.callback.progress import ProgressCallback
from fastai.callback.schedule import lr_find, fit_flat_cos

from fastai.data.block import DataBlock
from fastai.data.external import untar_data, URLs
from fastai.data.transforms import get_image_files, FuncSplitter, Normalize

from fastai.layers import Mish
from fastai.losses import BaseLoss
from fastai.optimizer import ranger

from fastai.torch_core import tensor

from fastai.vision.augment import aug_transforms
from fastai.vision.core import PILImage, PILMask
from fastai.vision.data import ImageBlock, MaskBlock, imagenet_stats
from fastai.vision.learner import unet_learner

from PIL import Image
import numpy as np

from torch import nn
from torchvision.models.resnet import resnet34

import torch
import torch.nn.functional as F

Dataset

path = get_data('cleaner'); path
Path('/home/drscotthawley/.espiownage/data/espiownage-cleaner')

Let's look at an image and see how everything aligns up

path_im = path/'images'
path_lbl = path/'masks'

First we need our filenames

import glob 
meta_names = sorted(glob.glob(str(path/'annotations')+'/*.csv'))
fnames = [meta_to_img_path(x, img_bank=path_im) for x in meta_names]
lbl_names = get_image_files(path_lbl)
len(meta_names), len(fnames), len(lbl_names)
(1955, 1955, 1955)

And now let's work with one of them

img_fn = fnames[10]
print(img_fn)
img = PILImage.create(img_fn)
img.show(figsize=(5,5))
/home/drscotthawley/.espiownage/data/espiownage-cleaner/images/06240907_proc_00299.png
<AxesSubplot:>

Now let's grab our y's. They live in the labels folder and are denoted by a _P

get_msk = lambda o: path/'masks'/f'{o.stem}_P{o.suffix}'

The stem and suffix grab everything before and after the period respectively.

Our masks are of type PILMask and we will make our gradient percentage (alpha) equal to 1 as we are not overlaying this on anything yet

msk_name = get_msk(img_fn)
print(msk_name)
msk = PILMask.create(msk_name)
msk.show(figsize=(5,5), alpha=1)
/home/drscotthawley/.espiownage/data/espiownage-cleaner/masks/06240907_proc_00299_P.png
<AxesSubplot:>

Now if we look at what our mask actually is, we can see it's a giant array of pixels:

print(tensor(msk))
tensor([[0, 0, 0,  ..., 0, 0, 0],
        [0, 0, 0,  ..., 0, 0, 0],
        [0, 0, 0,  ..., 0, 0, 0],
        ...,
        [0, 0, 0,  ..., 0, 0, 0],
        [0, 0, 0,  ..., 0, 0, 0],
        [0, 0, 0,  ..., 0, 0, 0]], dtype=torch.uint8)

And just make sure that it's a simple file and not antialiasing. Let's see what values it contains:

set(np.array(msk).flatten())
{0, 1}

Where each one represents a class that we can find in codes.txt. Let's make a vocabulary with it

#colors = [0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110]
#colors = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]
colors = list(set(np.array(msk).flatten()))
codes = [str(n) for n in range(len(colors))]; codes
['0', '1']

We need a split function that will split from our list of valid filenames we grabbed earlier. Let's try making our own.

This takes in our filenames, and checks for all of our filenames in all of our items in our validation filenames

Transfer Learning between DataSets

Jeremy popularized the idea of image resizing:

  • Train on smaller sized images
  • Eventually get larger and larger
  • Transfer Learning loop

This first round we will train at half the image size

sz = msk.shape; sz
(384, 512)
half = tuple(int(x/2) for x in sz); half
(192, 256)
db = DataBlock(blocks=(ImageBlock, MaskBlock(codes)),
    get_items=get_image_files,
    splitter=RandomSplitter(),
    get_y=get_msk,
    batch_tfms=[*aug_transforms(size=half, flip_vert=True), Normalize.from_stats(*imagenet_stats)])
dls = db.dataloaders(path/'images', fnames=fnames, bs=4)
/home/drscotthawley/.local/lib/python3.8/site-packages/torch/_tensor.py:575: UserWarning: floor_divide is deprecated, and will be removed in a future version of pytorch. It currently rounds toward 0 (like the 'trunc' function NOT 'floor'). This results in incorrect rounding for negative values.
To keep the current behavior, use torch.div(a, b, rounding_mode='trunc'), or for actual floor division, use torch.div(a, b, rounding_mode='floor'). (Triggered internally at  /pytorch/aten/src/ATen/native/BinaryOps.cpp:467.)
  return torch.floor_divide(self, other)
/home/drscotthawley/.local/lib/python3.8/site-packages/torch/_tensor.py:1023: UserWarning: torch.solve is deprecated in favor of torch.linalg.solveand will be removed in a future PyTorch release.
torch.linalg.solve has its arguments reversed and does not return the LU factorization.
To get the LU factorization see torch.lu, which can be used with torch.lu_solve or torch.lu_unpack.
X = torch.solve(B, A).solution
should be replaced with
X = torch.linalg.solve(A, B) (Triggered internally at  /pytorch/aten/src/ATen/native/BatchLinearAlgebra.cpp:760.)
  ret = func(*args, **kwargs)

Let's look at a batch, and look at all the classes

dls.show_batch(max_n=4, vmin=0, vmax=2, figsize=(14,10))

Lastly let's make our vocabulary a part of our DataLoaders, as our loss function needs to deal with the Void label

dls.vocab = codes

Now we need a methodology for grabbing that particular code from our output of numbers. Let's make everything into a dictionary

name2id = {v:int(v) for k,v in enumerate(codes)}
name2id
{'0': 0, '1': 1}

Awesome! Let's make an accuracy function

void_code = name2id['0'] # name2id['Void']

For segmentation, we want to squeeze all the outputted values to have it as a matrix of digits for our segmentation mask. From there, we want to match their argmax to the target's mask for each pixel and take the average

def acc_camvid(inp, targ):
    targ = targ.squeeze(1)
    mask = targ != void_code
    if len(targ[mask]) == 0:  mask = (targ == void_code)  # Empty image (all void) 
    return (inp.argmax(dim=1)[mask]==targ[mask]).float().mean()

The Dynamic Unet

U-Net allows us to look at pixel-wise representations of our images through sizing it down and then blowing it bck up into a high resolution image. The first part we call an "encoder" and the second a "decoder"

On the image, the authors of the UNET paper describe the arrows as "denotions of different operations"

We have a special unet_learner. Something new is we can pass in some model configurations where we can declare a few things to customize it with!

  • Blur/blur final: avoid checkerboard artifacts
  • Self attention: A self-attention layer
  • y_range: Last activations go through a sigmoid for rescaling
  • Last cross - Cross-connection with the direct model input
  • Bottle - Bottlenck or not on that cross
  • Activation function
  • Norm type

Let's make a unet_learner that uses some of the new state of the art techniques. Specifically:

  • Self-attention layers: self_attention = True
  • Mish activation function: act_cls = Mish

Along with this we will use the Ranger as optimizer function.

opt = ranger
learn = unet_learner(dls, resnet34, metrics=acc_camvid, self_attention=True, act_cls=Mish, opt_func=opt)
/home/drscotthawley/.local/lib/python3.8/site-packages/torch/nn/functional.py:718: UserWarning: Named tensors and all their associated APIs are an experimental feature and subject to change. Please do not use them for anything important until they are released as stable. (Triggered internally at  /pytorch/c10/core/TensorImpl.h:1156.)
  return torch.max_pool2d(input, kernel_size, stride, padding, dilation, ceil_mode)
learn.summary()
DynamicUnet (Input shape: 4)
============================================================================
Layer (type)         Output Shape         Param #    Trainable 
============================================================================
                     4 x 64 x 96 x 128   
Conv2d                                    9408       False     
BatchNorm2d                               128        True      
ReLU                                                           
MaxPool2d                                                      
Conv2d                                    36864      False     
BatchNorm2d                               128        True      
ReLU                                                           
Conv2d                                    36864      False     
BatchNorm2d                               128        True      
Conv2d                                    36864      False     
BatchNorm2d                               128        True      
ReLU                                                           
Conv2d                                    36864      False     
BatchNorm2d                               128        True      
Conv2d                                    36864      False     
BatchNorm2d                               128        True      
ReLU                                                           
Conv2d                                    36864      False     
BatchNorm2d                               128        True      
____________________________________________________________________________
                     4 x 128 x 24 x 32   
Conv2d                                    73728      False     
BatchNorm2d                               256        True      
ReLU                                                           
Conv2d                                    147456     False     
BatchNorm2d                               256        True      
Conv2d                                    8192       False     
BatchNorm2d                               256        True      
Conv2d                                    147456     False     
BatchNorm2d                               256        True      
ReLU                                                           
Conv2d                                    147456     False     
BatchNorm2d                               256        True      
Conv2d                                    147456     False     
BatchNorm2d                               256        True      
ReLU                                                           
Conv2d                                    147456     False     
BatchNorm2d                               256        True      
Conv2d                                    147456     False     
BatchNorm2d                               256        True      
ReLU                                                           
Conv2d                                    147456     False     
BatchNorm2d                               256        True      
____________________________________________________________________________
                     4 x 256 x 12 x 16   
Conv2d                                    294912     False     
BatchNorm2d                               512        True      
ReLU                                                           
Conv2d                                    589824     False     
BatchNorm2d                               512        True      
Conv2d                                    32768      False     
BatchNorm2d                               512        True      
Conv2d                                    589824     False     
BatchNorm2d                               512        True      
ReLU                                                           
Conv2d                                    589824     False     
BatchNorm2d                               512        True      
Conv2d                                    589824     False     
BatchNorm2d                               512        True      
ReLU                                                           
Conv2d                                    589824     False     
BatchNorm2d                               512        True      
Conv2d                                    589824     False     
BatchNorm2d                               512        True      
ReLU                                                           
Conv2d                                    589824     False     
BatchNorm2d                               512        True      
Conv2d                                    589824     False     
BatchNorm2d                               512        True      
ReLU                                                           
Conv2d                                    589824     False     
BatchNorm2d                               512        True      
Conv2d                                    589824     False     
BatchNorm2d                               512        True      
ReLU                                                           
Conv2d                                    589824     False     
BatchNorm2d                               512        True      
____________________________________________________________________________
                     4 x 512 x 6 x 8     
Conv2d                                    1179648    False     
BatchNorm2d                               1024       True      
ReLU                                                           
Conv2d                                    2359296    False     
BatchNorm2d                               1024       True      
Conv2d                                    131072     False     
BatchNorm2d                               1024       True      
Conv2d                                    2359296    False     
BatchNorm2d                               1024       True      
ReLU                                                           
Conv2d                                    2359296    False     
BatchNorm2d                               1024       True      
Conv2d                                    2359296    False     
BatchNorm2d                               1024       True      
ReLU                                                           
Conv2d                                    2359296    False     
BatchNorm2d                               1024       True      
BatchNorm2d                               1024       True      
ReLU                                                           
____________________________________________________________________________
                     4 x 1024 x 6 x 8    
Conv2d                                    4719616    True      
Mish                                                           
____________________________________________________________________________
                     4 x 512 x 6 x 8     
Conv2d                                    4719104    True      
Mish                                                           
____________________________________________________________________________
                     4 x 1024 x 6 x 8    
Conv2d                                    525312     True      
Mish                                                           
PixelShuffle                                                   
BatchNorm2d                               512        True      
Conv2d                                    2359808    True      
Mish                                                           
Conv2d                                    2359808    True      
Mish                                                           
Mish                                                           
____________________________________________________________________________
                     4 x 1024 x 12 x 16  
Conv2d                                    525312     True      
Mish                                                           
PixelShuffle                                                   
BatchNorm2d                               256        True      
Conv2d                                    1327488    True      
Mish                                                           
Conv2d                                    1327488    True      
Mish                                                           
____________________________________________________________________________
                     4 x 48 x 768        
Conv1d                                    18432      True      
Conv1d                                    18432      True      
Conv1d                                    147456     True      
Mish                                                           
____________________________________________________________________________
                     4 x 768 x 24 x 32   
Conv2d                                    295680     True      
Mish                                                           
PixelShuffle                                                   
BatchNorm2d                               128        True      
Conv2d                                    590080     True      
Mish                                                           
Conv2d                                    590080     True      
Mish                                                           
Mish                                                           
____________________________________________________________________________
                     4 x 512 x 48 x 64   
Conv2d                                    131584     True      
Mish                                                           
PixelShuffle                                                   
BatchNorm2d                               128        True      
____________________________________________________________________________
                     4 x 96 x 96 x 128   
Conv2d                                    165984     True      
Mish                                                           
Conv2d                                    83040      True      
Mish                                                           
Mish                                                           
____________________________________________________________________________
                     4 x 384 x 96 x 128  
Conv2d                                    37248      True      
Mish                                                           
PixelShuffle                                                   
ResizeToOrig                                                   
MergeLayer                                                     
Conv2d                                    88308      True      
Mish                                                           
Conv2d                                    88308      True      
Sequential                                                     
Mish                                                           
____________________________________________________________________________
                     4 x 2 x 192 x 256   
Conv2d                                    200        True      
ToTensorBase                                                   
____________________________________________________________________________

Total params: 41,405,488
Total trainable params: 20,137,840
Total non-trainable params: 21,267,648

Optimizer used: <function ranger at 0x7f8ded0d95e0>
Loss function: FlattenedLoss of CrossEntropyLoss()

Model frozen up to parameter group #2

Callbacks:
  - TrainEvalCallback
  - Recorder
  - ProgressCallback

If we do a learn.summary we can see this blow-up trend, and see that our model came in frozen. Let's find a learning rate

learn.lr_find()
SuggestedLRs(valley=0.00013182566908653826)
lr = 1e-4

With our new optimizer, we will also want to use a different fit function, called fit_flat_cos

learn.fit_flat_cos(12, slice(lr))
epoch train_loss valid_loss acc_camvid time
0 0.218108 0.159381 0.849156 00:30
1 0.177847 0.155149 0.929961 00:30
2 0.167644 0.139098 0.921508 00:30
3 0.166890 0.129924 0.890381 00:30
4 0.154345 0.126654 0.887345 00:30
5 0.151404 0.125391 0.920094 00:30
6 0.144153 0.121622 0.910195 00:30
7 0.144697 0.119496 0.908009 00:30
8 0.140314 0.117944 0.910999 00:30
9 0.133328 0.120853 0.890411 00:30
10 0.133413 0.117252 0.920777 00:30
11 0.133636 0.113653 0.910122 00:30
learn.save('stage-1-real')   # Zach saves in case Colab dies / gives OOM
learn.load('stage-1-real');  # he reloads as a way of skipping what came before if he restarts the runtime.
learn.show_results(max_n=4, figsize=(12,6))

Let's unfreeze the model and decrease our learning rate by 4 (Rule of thumb)

lrs = slice(lr/400, lr/4)
lr, lrs
(0.0001, slice(2.5e-07, 2.5e-05, None))
learn.unfreeze()

And train for a bit more

learn.fit_flat_cos(15, lrs)
epoch train_loss valid_loss acc_camvid time
0 0.128319 0.113461 0.897079 00:33
1 0.126487 0.111579 0.891239 00:33
2 0.124438 0.119075 0.933614 00:33
3 0.116589 0.111288 0.903795 00:33
4 0.122276 0.110552 0.902124 00:33
5 0.122483 0.110194 0.912750 00:33
6 0.121907 0.110482 0.918114 00:33
7 0.115748 0.109819 0.913142 00:33
8 0.129609 0.108962 0.903963 00:33
9 0.116584 0.108127 0.913611 00:33
10 0.119257 0.108500 0.917506 00:33
11 0.113893 0.107195 0.913769 00:33
12 0.116760 0.107373 0.918036 00:33
13 0.116606 0.105527 0.909118 00:33
14 0.115598 0.105661 0.910555 00:33

Now let's save that model away

learn.save('seg_allone_half_real')
Path('models/seg_allone_half_real.pth')
learn.load('seg_allone_half_real')
<fastai.learner.Learner at 0x7f8de439d460>

And look at a few results

learn.show_results(max_n=6, figsize=(10,10))

Inference

Let's take a look at how to do inference with test_dl

dl = learn.dls.test_dl(fnames[0:8])
dl.show_batch()

Let's do the first five pictures

preds = learn.get_preds(dl=dl)
len(preds)
2
preds[0].shape
torch.Size([8, 2, 192, 256])

Alright so we have a 5x32x360x480

len(codes)
2

What does this mean? We had five images, so each one is one of our five images in our batch. Let's look at the first

ind = 6
pred_1 = preds[0][ind]
pred_1.shape
torch.Size([2, 192, 256])

Now let's take the argmax of our values

pred_arx = pred_1.argmax(dim=0)

And look at it

plt.imshow(pred_arx)
<matplotlib.image.AxesImage at 0x7f8e418756d0>

What do we do from here? We need to save it away. We can do this one of two ways, as a numpy array to image, and as a tensor (to say use later rawly)

pred_arx = pred_arx.numpy()
rescaled = (255.0 / pred_arx.max() * (pred_arx - pred_arx.min())).astype(np.uint8)
im = Image.fromarray(rescaled)
im
im.save('test_real.png')

Let's make a function to do so for our files

for i, pred in enumerate(preds[0]):
  pred_arg = pred.argmax(dim=0).numpy()
  rescaled = (255.0 / pred_arg.max() * (pred_arg - pred_arg.min())).astype(np.uint8)
  im = Image.fromarray(rescaled)
  im.save(f'Image_{i}_real.png')

Now let's save away the raw:

torch.save(preds[0][ind], 'Image_1_real.pt')
pred_1 = torch.load('Image_1_real.pt')
plt.imshow(pred_1.argmax(dim=0))
<matplotlib.image.AxesImage at 0x7f8e417d14f0>

Full Size

Now let's go full sized. Restart your instance to re-free your memory

from fastai.vision.all import *
from espiownage.core import *
import glob 
path = Path('/home/drscotthawley/datasets/espiownage-cleaner/')
path_im = path/'images'
path_lbl = path/'masks'
#path = untar_data('https://anonymized.machine.com/~drscotthawley/espiownage-cleaner.tgz')
meta_names = sorted(glob.glob(str(path/'annotations')+'/*.csv'))
fnames = [meta_to_img_path(x, img_bank=path_im) for x in meta_names]
lbl_names = get_image_files(path_lbl)

get_msk = lambda o: path/'masks'/f'{o.stem}_P{o.suffix}'
colors = [0, 1]
codes = [str(n) for n in colors]; codes
sz = (384, 512)
name2id = {v:int(v) for k,v in enumerate(codes)}
void_code = name2id['0']

And re-make our dataloaders. But this time we want our size to be the full size

seg_db = DataBlock(blocks=(ImageBlock, MaskBlock(codes)),
                   get_items=get_image_files,
                   splitter=RandomSplitter(),
                   get_y=get_msk,
                   batch_tfms=[*aug_transforms(size=sz, flip_vert=True), Normalize.from_stats(*imagenet_stats)])

We'll also want to lower our batch size to not run out of memory

dls = seg_db.dataloaders(path/"images", fnames=fnames, bs=2)

Let's assign our vocab, make our learner, and load our weights

opt = ranger
def acc_camvid2(inp, targ, warn=False):
    targ = targ.squeeze(1) 
    mask = targ != void_code  # where it's nonzero
    if len(targ[mask]) == 0:  # Empty image (all void)
        mask = (targ == void_code)  
        if warn:
            acc_empty = (inp.argmax(dim=1)[mask]==targ[mask]).float().mean() # score based on what's correct overall (~100%?)
            print("Empty image, acc_empty = ",acc_empty.cpu().numpy())
    return (inp.argmax(dim=1)[mask]==targ[mask]).float().mean() 

def acc_camvid3(inp, targ):
    mask = inp.argmax(dim=1) == targ.squeeze(1) # could give inflated scores for images dominated by void
    return mask.float().mean()

dls.vocab = codes
learn = unet_learner(dls, resnet34, metrics=acc_camvid2, self_attention=True, act_cls=Mish, opt_func=opt)
learn.load('seg_allone_half_real');

And now let's find our learning rate and train!

learn.lr_find()
SuggestedLRs(valley=9.120108734350652e-05)
lr = 1e-4
learn.fit_flat_cos(12, slice(lr))
epoch train_loss valid_loss acc_camvid2 time
0 0.147074 0.136607 0.893107 01:39
1 0.146167 0.126824 0.871420 01:40
2 0.142257 0.127077 0.884344 01:40
3 0.133490 0.124542 0.869251 01:40
4 0.134217 0.118986 0.853320 01:40
5 0.129327 0.120740 0.830066 01:40
6 0.128876 0.117088 0.893523 01:40
7 0.125511 0.127956 0.836450 01:40
8 0.127004 0.117712 0.866968 01:40
9 0.123945 0.112667 0.853586 01:40
10 0.120263 0.109135 0.860165 01:40
11 0.114325 0.107395 0.874212 01:40
learn.save('seg_full_1_real')  # save a checkpoint just in case we need to restart form here
Path('models/seg_full_1_real.pth')
learn.unfreeze()
lrs = slice(1e-6,lr/10); lrs
slice(1e-06, 1e-05, None)
learn.fit_flat_cos(12, lrs)
epoch train_loss valid_loss acc_camvid2 time
0 0.110415 0.106037 0.874851 01:46
1 0.105756 0.105655 0.879418 01:47
2 0.114359 0.107503 0.871550 01:47
3 0.111927 0.105675 0.872224 01:47
4 0.111277 0.107141 0.874034 01:46
5 0.099011 0.108038 0.866611 01:46
6 0.103979 0.104321 0.869229 01:47
7 0.109011 0.105106 0.883050 01:46
8 0.105186 0.104286 0.880461 01:47
9 0.102166 0.103301 0.873771 01:47
10 0.099486 0.103923 0.869844 01:47
11 0.101186 0.102419 0.875785 01:46
learn.save('seg_allone_full_real')
Path('models/seg_allone_full_real.pth')
learn.show_results(max_n=4, figsize=(18,8))
interp = SegmentationInterpretation.from_learner(learn)
nplot, x = 10, 1
for i in interp.top_losses(nplot).indices:
    print(f"[{x}] {dls.valid_ds.items[i]}")
    x += 1
interp.plot_top_losses(k=nplot)
[1] /home/drscotthawley/datasets/espiownage-cleaner/images/06240907_proc_00872.png
[2] /home/drscotthawley/datasets/espiownage-cleaner/images/06241902_proc_01206.png
[3] /home/drscotthawley/datasets/espiownage-cleaner/images/06241902_proc_00895.png
[4] /home/drscotthawley/datasets/espiownage-cleaner/images/06241902_proc_00915.png
[5] /home/drscotthawley/datasets/espiownage-cleaner/images/06240907_proc_00561.png
[6] /home/drscotthawley/datasets/espiownage-cleaner/images/06241902_proc_01515.png
[7] /home/drscotthawley/datasets/espiownage-cleaner/images/06240907_proc_01168.png
[8] /home/drscotthawley/datasets/espiownage-cleaner/images/06241902_proc_00765.png
[9] /home/drscotthawley/datasets/espiownage-cleaner/images/06241902_proc_00609.png
[10] /home/drscotthawley/datasets/espiownage-cleaner/images/06241902_proc_01047.png
preds, targs, losses = learn.get_preds(with_loss=True) # validation set only
print(preds.shape, targs.shape)
len(preds)
torch.Size([391, 2, 384, 512]) torch.Size([391, 384, 512])
391
def save_tmask(tmask, fname, argmax=True):
    tmask_new = tmask.argmax(dim=0).cpu().numpy() if argmax else tmask.cpu().numpy()
    rescaled = (255.0 / tmask_new.max() * (tmask_new - tmask_new.min())).astype(np.uint8)
    im = Image.fromarray(rescaled)
    im.save(fname)
seg_img_dir = 'seg_images'
!rm -rf {seg_img_dir}; mkdir {seg_img_dir}
results = []
for i in range(len(preds)):
    #line_list = [dls.valid.items[i].stem]+[round(targs[i].cpu().numpy().item(),2), round(preds[i][0].cpu().numpy().item(),2), losses[i].cpu().numpy(), i]
    filestem = dls.valid.items[i].stem
    line_list = [filestem]+[losses[i].cpu().numpy(), i]
    save_tmask(preds[i], seg_img_dir+'/'+filestem+'_pred.png')
    #save_tmask(targs[i], seg_img_dir+'/'+filestem+'_targ.png', argmax=False) # already got targs as inputs!
    results.append(line_list)

# store as pandas dataframe
res_df = pd.DataFrame(results, columns=['filename', 'loss','i'])
res_df = res_df.sort_values('loss', ascending=False)
res_df.to_csv('segmentation_allone_top_losses_real.csv', index=False)